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*∗Abstract—Biomedical research increasingly depends on access 
to and analysis of distributed medical and biomedical data. In 
biomedical research, datasets are often collected at multiple 
locations, as it is difficult to recruit required patient populations 
at one location. The sensitive nature of these datasets leads to a 
need for secure sharing methods that can work with distributed 
databases and image archives. The efficient implementation of 
such methods is complicated by the fact that the researchers who 
need to access data are often behind firewalls that prohibit 
inbound connections. This restriction, combined with large data 
volumes and many small files, leads to significant data transfer 
challenges. We present a data management framework suitable 
for such distributed biomedical research environments and 
describe its application in the context of FBIRN, a distributed 
data-sharing system for medical researchers. The framework 
includes security tools, catalogs for managing datasets, and a 
secure data transfer service. 

Keywords - Data management, Biomedical research, 
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I.  INTRODUCTION  
Biomedical research increasingly depends on access to 

and analysis of multiple, geographically distributed sources 
of medical and biological data. Data must be stored, 
processed and made easily available to different biomedical 
participants: researchers, physicians and healthcare centers. 

Healthcare applications impose several requirements 
on computing infrastructure. The need to record, manage, 
and use sensitive personal data leads to strict privacy 
requirements. Healthcare systems must comply with 
privacy laws, medical information standards, and 
institutional review board restrictions. Encrypted 
transmission and storage are not sufficient; automatic de-
identification or anonymization may be required to 
guarantee privacy. Integrity verification is also important. 

As health research moves towards personalized 
medicine, it becomes increasingly difficult to recruit 
cohorts of patients at a single location. Thus, data are often 
collected at multiple locations. These data may consist of 
both images (e.g., MRI scans) and clinical evaluations 
(both structured and unstructured data). Because these data 
are sensitive, most centers prefer to store them locally 
rather than contribute them to central data warehouses. 
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Data are then shared with collaborators over well defined, 
secure, and robust interfaces. Management of such 
distributed databases and image archives is therefore 
critically important in this domain.  

Sites hosting individual data repositories are generally 
behind institutional network firewalls over which data 
repository operators may not have direct control. Firewall 
configurations typically do not allow outside services to 
request connections to servers inside the firewall except for 
a small number of well-defined service addresses. In 
addition, researchers and physicians who need to access 
these distributed datasets are generally behind restrictive 
network firewalls, which may not allow any inbound 
connections at all.  

The datasets are often large (terabytes) and may 
contain a large numbers (millions) of small files. These 
dataset characteristics, combined with strict firewall rules, 
present significant challenges in transferring these datasets 
over wide area networks reliably and efficiently. 

We present here a data management framework that is 
suitable for distributed biomedical research environments. 
This framework includes security tools [1, 2, 3], catalogs 
for managing data objects [4, 5], and a secure data transfer 
service [6, 7, 8]. We evaluate this framework in the context 
of Function BIRN (FBIRN) [9], a distributed data 
repository that integrates fMRI, structural imaging, and 
clinical data from multiple sites that the research 
community uses to develop and test novel hypotheses. 

The rest of the paper is as follows. In Section II, we 
describe the FBIRN collaboration and its requirements for 
secure, federated data publication and sharing. We present 
the data management framework in Section III. In Section 
IV, we evaluate our framework in the FBIRN environment. 
We discuss related work in Section V and summarize our 
work in Section VI. 

II. FBIRN 
The function BIRN (FBIRN) consortium comprises 10 

sites across the United States focused on developing fMRI 
tools and techniques for both federated data management 
and multi-site image calibration and analysis in the context 
of schizophrenia research [10]. Each FBIRN site collects 
and stores both clinical and neuroimaging data and 
associated metadata in local storage.  



A. FBIRN Environment 
The FBIRN environment demands a federated system 

capable of providing robust access to data stored at any site. 
Typical FBIRN usage suggests that this system must be 
able to support up to eight concurrent downloads and three 
concurrent uploads of image data to/from each site. 
Original, raw, and analyzed image data sets vary 
significantly in size. The original data from a single subject 
session comprises ~1.0 GB and 2.9K files, depending on 
scanning parameters. Normally, consortium sites download 
multiple subjects/sessions in bulk. These downloads consist 
of ~20 subjects over two scanning visits, for a total of ~42 
GB and 129K files. Users require that datasets transfer with 
a high success percentage and with verification for 
consistency at both the source and destination. In addition, 
FBIRN replicates datasets in the federation so they are 
available if the originating site’s systems are offline. 

In summary, FBIRN researchers want a dynamic, 
robust system that abstracts the users from the underlying 
complexity of the data federation, making it appear as 
though all the data exists in a single location. 

B. Data Requirements 
In the previous sections, we discussed our general 

observations from the biomedical sciences community and 
a specific application that motivated our data management 
framework. Here we discuss in detail the driving 
requirements that shaped the architecture. 

The system must provide to a specified set of project 
participants access to data located in a set of federated 
storage resources at several independent sites. Each site 
contributes commodity hardware and networking resources 
and limited systems administration resources. Failures at 
other sites must not prevent users from accessing their own 
local data, so long as the local resources are online. 

The system must store a large number of relatively 
small files. We anticipate each experiment will produce 
over a million files ranging in size from hundreds of bytes 
to several megabytes and will organize them hierarchically 
in a relatively flat directory tree with degree typically under 
five. 

The system must store files in a manner that is 
interoperable with other conventional systems. Often, 
specialized software systems of this nature employ 
proprietary storage mechanisms, which preclude access by 
other services such as Network File System [11], Rsync 
[12], and Secure Shell [13]. Though the system is intended 
to be robust, in the event of failure, it should never prevent 
access to locally owned data by keeping it in proprietary 
storage. 

The system must support security policies governing 
user group management and data access controls including 
create, read, write, and delete of files and directories. Users 
can belong to one or more groups, and the system must 
support multiple user- and group-based data access 

permissions per file or directory. In addition, the system 
must allow each storage resource to specify its own set of 
data access permissions, thus allowing different 
permissions for local users and users from other 
organizations in the federation. 

Typical workloads are shaped by the typical project 
lifecycle, which progresses through several phases of 
activity. In the data capture phase, data produced by the 
instruments are initially stored. In the subsequent quality 
assurance phase, a curator examines project data for 
defects and abnormalities. Finally, the data access phase 
commences, during which time users across the FBIRN 
federation may read any data at local or remote sites. 

The system must support multiple concurrent projects, 
which may be at different phases in the project lifecycle. In 
particular, the system must handle overlapping workloads 
from both data capture and data access phases. We expect 
the aggregate workload to consist of about a dozen clients 
with ~75% readers and ~25% writers. 

The workload during the data capture phase typically 
consists of a small number of writers performing large bulk 
writes to local storage. A client may write 2 GB or more in 
tens of thousands of small files. Multiple clients writing to 
a single dataset are not common. Typically, a single user is 
responsible for creating a new dataset. Once a dataset is 
written, it is seldom modified, except in the event of a 
quality assurance failure, in which case the complete data 
set is often retracted and republished. Thus, random 
mutations of data are rare. 

The workload during the data access phase typically 
consists of several local and remote readers. Like the 
writers in the data capture phase, the readers in the data 
access phase also perform large bulk operations. We expect 
that readers will download multiple datasets with over 
100,000 small files and a total volume of over 40 GB. We 
can expect that multiple readers may access the same 
dataset at the same time, since the data access phase 
follows data capture for a given project. 

We favor reliable data transfer and sustained 
throughput over latency. Applications tend to access data in 
large bulk operations, as described, in the range of 2 GB to 
40 GB, but in relatively infrequent, bursty patterns. Though 
the system supports interactive clients, we anticipate mostly 
batch clients. Also, given that administrative resources are 
limited, reliable data transfer is favored over performance.  

III. DATA MANAGEMENT ARCHITECTURE 
We present here the data management framework, 

including the basic design, the trust model, data access 
control, group membership service, and file transfer 
service.  

A. Design Overview 
The system consists of storage resources, file transfer 

services, registry services, a credential repository, a group 



membership service, and clients, as depicted in Figure 1. 
System components are loosely coupled and can operate 
independently and without shared state. By keeping the 
system loosely coupled, we simplify maintenance, reduce 
operations costs, and reduce the probability of system-wide 
failure. 

Figure 1: Data Management Architecture 

To preserve interoperability with other systems, data 
are stored conventionally in Linux file systems. Files are 
organized hierarchically under project directories. At each 
storage resource, a file transfer service is responsible for 
providing secure remote access to the underlying file 
system. The data objects at each storage system are 
identified uniquely by protocol-specific URLs. Currently, 
we support ftp, sshftp, and gsiftp protocol schemes [14]. 
The file transfer service supports storage, retrieval, third-
party transfer, delete, checksum generation, and checksum 
validation for individual files and for bulk operations with 
recursive directory traversal. Additionally, it supports 
changing ownership, setting access controls, and getting 
access control lists remotely. For the file transfer service, 
we used the Globus GridFTP Server [8]. 

The locations of data objects at each storage site are 
registered in registry catalogs that map those physical 
locations to logical names. A logical name is a location-
independent (i.e., host-independent) name for an object. It 
may be mapped to one or more instances of the object, 
usually by mapping to one or more URLs. Though the 
system supports individual file registration, the large 
number of files in the system motivates us to register 
logical name mappings to higher-level directories that serve 
as data set collections. This approach reduces the 
communication costs that would be incurred registering and 
locating many small data objects, and reduces the amount 
of metadata stored in registry services. Registry catalogs 
may be installed as a centralized service, or co-located with 
storage resources, or both. Each registry catalog generates a 
compressed index of its collection of logical names and 
updates a registry index service whenever its contents 

change. The registry index is used to quickly redirect 
clients to the appropriate registry catalog to answer queries 
for logical names. Together, the registry catalogs and 
registry index comprise the system’s registry services. For 
the registry services, we used the Globus Replica Location 
Service [15]. 

User applications can access the data management 
services by using a C or Java API. We also provide several 
client utilities for standalone operations. To retrieve data 
from the system, clients first refresh a temporary user 
credential, known as a proxy credential [16], from the 
credential repository, which authenticates the client based 
on username and password. The client then queries the 
registry index, which directs the client to the appropriate 
registry catalog that contains the location metadata for the 
data object. The client then queries a registry catalog to 
obtain a listing of one or more URLs to the data object. 
Finally, the client uses the URL to retrieve the data object 
using the file transfer service. For the credential repository, 
we used the MyProxy credential management service [17]. 

B. Trust Model 
Trust between system components is established by 

use of Public Key Infrastructure (PKI) [18], which depends 
on a chain of trust rooted by a Certificate Authority (CA). 
A certificate that traces back to the issuing CA identifies 
each system component and user. To establish trust 
between components, the CA root certificate is installed on 
each server and each service is issued a service or host 
certificate, which must also be installed on the server. The 
certificates enable cryptographically strong authentication 
when any two components communicate. Additional 
benefits of this trust model are its efficiency and 
robustness. With the CA root certificate installed on each 
server, components validate authenticity directly without 
the need to communicate with a third-party security service 
for every transaction. This structure reduces the amount of 
network traffic produced by the system and allows for 
continuous operation whether or not the central security 
services are online. 

For convenience and usability, the credential 
repository stores user certificates. When performing a data 
operation, the user provides his or her username and 
password to the client, which securely communicates with 
the credential repository to retrieve a temporary certificate 
(known as a proxy certificate [16]). The proxy certificate is 
valid for some duration up to a configurable upper limit, 
typically up to 12 hours. For the duration of the proxy 
lifetime, the client reuses the proxy certificate for all 
communication with the system. Again, the trust model 
enables efficiency and robustness by reducing unnecessary 
system interactions to establish trust. 



C. Access Control 
The system relies on the underlying Linux file systems 

to enforce data access control. We selected the ext3 Linux 
file system [19] in part for its support of the POSIX 
1003.1e draft specification [20] for extended access control 
lists (extended ACLs). Using extended ACLs, users can 
grant multiple read and write permissions for various users 
and groups, unlike traditional UNIX file permissions that 
are limited to granting permissions to a single user and a 
single group. Though the standards body abandoned the 
POSIX 1003.1e draft, numerous file systems and utilities 
support it, thus allowing interoperability between our 
system and third-party tools. 

When the client connects with the file transfer service, 
the file transfer service uses the proxy credential to 
authenticate the user and maps her certificate-based identity 
to her local user account recognized by the Linux file 
system. The file transfer service then forks (i.e., spawns a 
new process) and sets its user identity to her local user 
account. From that point forward, the Linux file system is 
able to enforce the extended ACLs on file transfer service 
operations. This approach stands in contrast to the typical 
approach to security taken by web applications where the 
web application operates as a privileged user that has near 
unlimited access to data and system resources. That 
approach has the disadvantage that relatively new and 
unproven custom code is used to enforce access control 
restrictions in the web application. An attacker need only 
find a way to compromise such a web application to gain 
access to any and all data on the server. Our approach, on 
the other hand, relies on kernel and file system 
implementations, which have been vetted by a large 
community of users. 

D. Group Membership 
To support user group based authorization, the system 

relies on a group membership service. The group 
membership service manages user and group membership 
details. We implement the group membership service using 
caBIG GridGrouper [21]. An authorized user may create 
groups and add group members. Groups can also be formed 
by composition or inheritance from other groups. 

At storage sites, an automated process periodically 
updates the local system’s users and groups by retrieving 
the users and groups from the group membership service 
and merging them into the local system. Since user 
accounts and group membership change infrequently, 
periodic synchronization with the group membership 
service is sufficient to support the scientific applications 
that use the system. This approach also keeps the system 
loosely coupled by avoiding communication with the group 
membership service for every user operation. In the event 
of network partitions or server failures at the group 
membership service, storage resources can continue to 
authorize data accesses. 

E. GridFTP Protocol 
The file transfer service supports the GridFTP file 

transfer protocol. The GridFTP protocol is a backward-
compatible extension of the legacy RFC959 FTP protocol. 
It maintains the same command/response semantics 
introduced by RFC959. It also maintains the two-channel 
protocol semantics. One channel is for control messaging 
(the control channel) such as requesting what files to 
transfer, and the other is for streaming the data payload (the 
data channel). 

Once a client successfully forms a control channel 
with a server, it can begin sending commands to the server. 
In order to transfer a file, the client must first establish a 
data channel. This task involves sending the server a series 
of commands on the control channel describing attributes 
of the desired data channel. Once these commands are 
successfully sent, a client can request a file transfer. At this 
point a separate data channel connection is formed using all 
of the agreed-upon attributes, and the requested file is sent 
across it.  

In standard FTP, the data channel can be used to 
transfer only a single file. Subsequent transfers must repeat 
the data channel setup process. GridFTP modifies this part 
of the protocol to allow many files to be transferred across 
a single data channel. This enhancement is known as data 
channel caching. GridFTP also introduces other 
enhancements to improve performance over the standard 
FTP mode. For example, parallelism and striping allow 
data to be sent over several independent data connections 
and reassembled on the destination. These enhancements 
require the use of the extended block mode (MODE E) [6] 
of GridFTP. In this mode, data channels must go from 
sender to receiver. 

GridFTP servers are typically configured to listen on 
one port for the control channel, and to use a configurable 
port range for data channel connections. Firewalls have to 
be configured accordingly. 

F. Constraints on the System 
As mentioned above, the biomedical environment 

imposes specialized requirements on a computing 
infrastructure. In particular, participating institutions have 
differing firewall requirements, ranging from no firewall to 
one or more institutional firewalls. 

Some sites do not allow any inbound connections to 
client machines. Thus, MODE E, which enables advanced 
GridFTP performance features such as pipelining, 
parallelism, and striping, cannot be leveraged in transfers 
on these clients for downloads, because inbound 
connections are blocked by firewalls. Data has to be 
downloaded using the standard FTP mode, where a separate 
TCP data connection has to be formed for each file to be 
sent. The result is greatly reduced performance. 



IV. EXPERIENCES AND LESSONS LEARNED 
We describe our experiences transferring a large 

FBIRN study, a data set organized as a directory tree with 
many directories (9292) and files (620791) with an overall 
size of 69 GB. The dataset is a complete FBIRN study that 
includes all subjects and all visits collected during a 
traveling subjects study from one site. Typically, after data 
collection is complete, most FBIRN sites will download the 
entire data set for analysis. 

We experimented with transferring this dataset from 
UCSD to UCI. In initial tests, only one run out of seven 
attempts completed successfully, and that successful run 
divided the dataset into 31 sub-datasets and performed 31 
data transfers instead of one. 

We describe here the problems that prevented these 
transfers from completing, and the solutions that we 
deployed to correct these problems. 

A. The many small files problem 
Transferring large directories with many files in 

standard FTP mode is inefficient, because for each file a 
data channel connection must be set up and torn down. 
However, this problem is exacerbated when transfers 
involve many small files, related to the TCP TIME_WAIT 
status. Upon closing a TCP connection, the connection goes 
into a TIME_WAIT state for two times the maximum 
segment lifetime (MSL), before finishing the connection 
close. This period typically defaults to 1-4 minutes, 
depending on operating system. 

In the case of transfers of many small files, it may 
happen that the limit for the maximum number of opened 
connections, defined on the GridFTP server by the TCP 
port range, is exceeded. If this happens, then all subsequent 
transfer requests hang. 

B. The many small files solution 
To limit the number of data channel connections used 

when transferring many small files and to improve 
performance and reliability, we made use of the popen 
(pipe open) driver [22] feature of the Globus GridFTP 
server Globus Toolkit v5.x. This feature allows users to 
execute arbitrary programs on the server and to 
communicate with the programs using UNIX pipes from 
the GridFTP server to the standard I/O of the executed 
programs. It utilizes the same underlying approach that 
users of shell scripts employ to compose multiple 
executables and pipe standard I/O between them.  

We leveraged the popen driver to transfer directories 
as a single large archive file. The following steps illustrate 
a scenario of a directory download: 
1. The client creates a control channel connection to the 

server and tells the server that the requested data must 
be archived prior to the transfer. 

2. If the server has popen support enabled, the server 
archives the data with the specified command, and 

sends the resulting data as a stream over a single data 
channel, as generated by the archive program (e.g., tar). 

3. The client receives the archive file over the data 
channel and unpacks it as it is received (again using 
tar), recreating the directory structure in the client file 
system. 
The mechanism is the same for an upload scenario. 

For the user, the use of the popen driver is opaque. 
We note that execution of arbitrary programs as part 

of a data transfer opens a potential security risk. The 
Globus GridFTP Server can be configured with a whitelist 
of programs that can be run. A server only permits 
execution of programs on its popen whitelist. If a client 
requests a program to be run that is not on the whitelist, the 
transfer fails. 

 
Table1: Transfer characteristics of tar-enabled GridFTP 

 
We tested this solution with different dataset sizes (2 

GB and 21 GB) and concurrency levels. The 2 GB dataset 
contained 5.9K files and corresponds to a single subject 
scanned twice on the fMRI scanner. FBIRN sites typically 
contribute such datasets during study data collection. The 
21 GB dataset contained 64.6K files and is equivalent to 10 
subjects over 2 visits. These data sizes are typical of an 
FBIRN download for data analysis.  Table 1 shows that the 
data transfer success rate goes down as the data transfer 
time increases. It has been shown in an earlier study [23] 
that increased concurrency levels improves GridFTP’s 
transfer rate for many small files datasets. Table 1 shows 
that as the concurrency level increases, the transfer rate 
decreases. It has to be noted that many small files datasets 
are tarred up into large archive files and transferred here. 
Table 1 shows the transfer rates for concurrent transfer of 
multiple 2 GB files and multiple 21 GB files. For many 
small files transfers, concurrent transfers improve the 
performance by overlapping the latency between file 
transfers on one session with the file transfers on one or 



more other sessions. Large single file transfers do not have 
the issue of latency between file transfers, and when 
multiple large files are transferred concurrently, the load on 
the server increases, leading to lower transfer rates. 

C. The control channel disconnect problem 
While transferring a nested directory as a single 

archive stream greatly improved performance and 
reliability, it led to another problem. As mentioned above, 
FTP and thus GridFTP employ a two-channel protocol. To 
remain compatible with FTP, GridFTP sends no data over 
the control channel after the connection has been 
established and while data are being sent. Only after the 
data have been transferred is the control channel used to 
complete the transfer. Depending on various parameters 
like the size of the data to be transferred, network 
bandwidth, and the disk speed, a directory transfer can take 
a long time. During this time the control channel is idle. 

When clients or servers are behind a NAT proxy or a 
firewall, connections that are idle for a long time often are 
disconnected. This behavior is caused by the connection 
tracking mechanisms implemented in proxies and firewalls, 
which keep track of all connections that pass through them. 
These mechanisms can only keep a finite number of 
connections in their memory. A common policy is to keep 
the newest and most active connections and to discard old 
and inactive connections first. 

This behavior caused problems with long-running 
transfers, because the control channel connection was 
dropped silently. Transfers hung and failed. 

 

Figure 2: Volumes of data moved using our data 
management architecture at various FBIRN sites 

D. The control channel disconnect solution 
To solve this problem, we leverage the TCP keepalive 

mechanism to avoid connection dropping. With TCP 
keepalive, “probes” are transmitted to network peers at a 

configurable time interval, and the probes prevent peers 
from closing connections by informing them that the sender 
is still “alive”. Linux has built-in support for TCP 
keepalive; however, the default settings in most Linux 
distributions exceed the time limit used by proxies and 
firewalls to close idle TCP connections. Thus, by the time 
the kernel sends probes to keep the connection open, the 
proxy or firewall may have already closed the connection. 
By configuring TCP keepalive on the GridFTP server 
machines to probe idle connections at a more frequent 
interval, connection dropping was avoided.  

When using the methods just described, all tests listed 
in Table 1 succeeded, as did the UCSD-to-UCI transfer 
described at the beginning of this section. Large volumes of 
data are being transferred between FBIRN sites reliably and 
efficiently every day using these new capabilities to enable 
collaborative imaging studies. Figure 2 shows the volumes 
of data moved to/from various FBIRN sites on a day-to-day 
basis for a seven-day period (July 23 – 29, 2010). 

E. Continuous monitoring 
Recall from our requirements discussion (section 2) 

that in the FBIRN user community, reliable transfer and 
sustained throughput are preferred over high performance. 
In non-technical terms, what this means is that the FBIRN 
scientists need the data transfer services to behave 
predictably: performance (good or bad) should meet 
expectations based on past behavior. This requirement led 
us to two goals: (1) stabilize the system's behavior, and (2) 
measure the system's behavior and publish results to set 
reasonable expectations among the users. 

 
Table 2: A sample view of the data from our continuous 

monitoring tests 

 
We accomplished both of these goals by establishing 

an automated test mechanism.  The mechanism performs a 
set of tests across all of the FBIRN GridFTP servers on a 
continuous basis and records the results so that they may be 



reviewed over a period of time to get a sense of the 
system's stability and performance. Two types of tests are 
performed.  A relatively short data transfer between each 
pair of data centers is performed frequently (multiple times 
per day) in order to ensure that the services are operating 
normally. A relatively long data transfer between pairs of 
centers is performed infrequently (once per day or every 
other day) to measure the performance of the system.  

Our data from automated, continuous testing 
confirmed what we suspected: that the majority of FBIRN's 
servers were stable and performed well. The data allowed 
us to easily identify and tend to several servers that were 
unreliable (either erratic or consistently failing).  In each 
case, the issue was caused by a unique combination of 
GridFTP software mis-configuration, operating system mis-
configuration, or institutional firewall configuration. The 
data also allowed us to provide the FBIRN user community 
with a sense of the performance they can expect under 
normal circumstances, given the limitations placed on the 
system by firewalls, network connections, and hardware 
configuration. This has helped to give FBIRN users a sense 
that they can rely on the system to behave predictably, 
allowing them to focus their attention on scientific 
challenges. 

A continuous view of data from the monitoring system 
for the period 5/21/2010 to 5/29/2010 is shown in table 2. 
Site A exhibits consistent failures to several other sites 
through 5/27. The site administrator corrected a 
configuration problem, and as of 5/28 the errors cleared up. 
Site B exhibits consistently successful behavior, so it did 
not require any attention. When moving data from Site B, 
users at sites D, H, I, and J could expect high performance, 
sites F and G could expect moderate performance, and sites 
A, C, and E could expect relatively low performance.  

V. RELATED WORK 
Distributed file systems [24, 25, 26] can be used to 

enable access to remote data while maintaining file system 
semantics. These systems can replicate data transparently 
across sites and provide a level of fault tolerance. Our 
system is intended for use in loosely coupled environments 
where file system semantics is neither achievable nor 
desirable. 

Before it adopted the framework described in this 
paper, FBIRN used Storage Resource Broker (SRB) [27, 
28] for data publication and sharing. SRB uses a logically 
centralized catalog (MCAT) to manage data publication, 
metadata and replica creation and consistency. In contrast, 
our framework supports more relaxed consistency among 
replicas and offers distributed file registry services that 
eliminate the bottleneck of the centralized catalog approach 
of MCAT. An important advantage for FBIRN users is that 
our framework maintains data in file systems, allowing 
access using conventional clients.  FBIRN’s transition from 
SRB to the presented system was motivated by 

unacceptably slow and unreliable data transfers, bottlenecks 
due to the reliance on a centralized metadata catalog, and 
lack of access to local data when central services were 
offline. 

Another approach to management of images and 
metadata is the XNAT (eXtensible Neuroimaging Archive 
Toolkit) system [29] from Washington University, which 
has some analogous capabilities to the present system. 
XNAT is positioned as a research imaging archive and 
offers support for medical imaging protocols, annotations, 
extensible metadata schema, and file storage. Unlike the 
system we describe, XNAT does not attempt to federate 
storage systems for large collaborative research groups, and 
it allows access to images via medical imaging protocols, a 
custom web service protocol, and its Web user interface. In 
cases where a scientific application wishes to keep data 
storage centralized, a system such as XNAT may provide 
the preferred approach. 

Pipelining [30] and concurrency [22] approaches in 
GridFTP improve the transfer performance of datasets with 
many small files. In order for pipelining to be effective, 
data channel caching in GridFTP is required, which is 
available only in MODE E protocol [6] in GridFTP. But 
MODE E protocol often cannot be used in this environment 
due to the fact that inbound connections are prohibited on 
the user (data receiver) end. In the absence of MODE E, 
concurrency requires that many ports be opened on the 
server (data source), which is also not possible. The tar 
functionality in GridFTP (developed for this framework) 
improves performance for many small files without the 
need for MODE E protocol and/or more open ports at the 
server. 

VI. SUMMARY 
We have developed a data management framework for 

distributed biomedical research applications. The 
framework was motivated by the need of FBIRN 
researchers to securely and reliably transfer data stored at 
multiple sites nationwide. To this end, we adopted a loosely 
coupled approach comprising a registry catalog, a 
credential repository, a group membership service, and a 
file transfer service and relying on an underlying Linux file 
system for access control. To facilitate the transfer of many 
small files, we implemented a tar-enabled feature in 
GridFTP. To avoid connection dropping, we use TCP 
keepalive to probe idle connections frequently. We also 
developed a continuous monitoring framework to measure 
the system’s stability and performance. With these new 
capabilities, we are reliably and efficiently transferring 
large volumes of data among FBIRN sites to enable 
collaborative imaging studies that produce and share 
millions of files over wide area networks between secure 
biomedical research facilities. 

ACKNOWLEDGMENT  



This work was supported in part by the Biomedical 
Informatics Research Network (1 U24 RR025736-01). This 
work was supported in part by the Office of Advanced 
Scientific Computing Research, Office of Science, U.S. 
Department of Energy, under Contract DE-AC02-
06CH11357. 

REFERENCES 
[1] V. Welch, I. Foster, C. Kesselman, O. Mulmo, L. Pearlman, 

S. Tuecke, J. Gawor, S. Meder, F. Siebenlist, "X.509 Proxy 
Certificates for Dynamic Delegation," 3rd Annual PKI 
R&D Workshop, 2004. 

[2] I. Foster, C. Kesselman, G. Tsudik, S. Tuecke, "A Security 
Architecture for Computational Grids," in 5th ACM 
Conference on Computer and Communications Security 
Conference, 1998, pp. 83-92. 

[3] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. 
Volmer, V. Welch, "A National-Scale Authentication 
Infrastructure," IEEE Computer, vol. 33, no. 12, 2000, pp. 
60-66, 2000. 

[4] Chervenak, A. L., Palavalli, N., Bharathi, S., Kesselman, 
C., and Schwartzkopf, R. Performance and Scalability of a 
Replica Location Service. 13th IEEE international 
Symposium on High Performance Distributed Computing, 
2004 

[5] A. Chervenak, R. Schuler, M. Ripeanu, M. Amer, S. 
Bharathi, I. Foster, A. Iamnitchi, and C. Kesselman, "The 
Globus Replica Location Service: Design and Experience," 
IEEE Transactions on Parallel and Distributed Systems, 
vol. 20 no. 9, pp. 1260-1272, 2009. 

[6] Allcock, W. GridFTP: Protocol Extensions to FTP for the Grid. 
Global Grid ForumGFD-R-P.020, 2003. 

[7] Allcock, B., Bester, J., Bresnahan, J., Chervenak, A. L., 
Kesselman, C., Meder, S., Nefedova, V., Quesnel, D., 
Tuecke, S., and Foster, I. Secure, Efficient Data Transport 
and Replica Management for High-Performance Data-
Intensive Computing. 18th IEEE Symposium on Mass 
Storage Systems and Technologies, 2001 

[8] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. 
Dumitrescu, I. Raicu, and I. Foster, “The Globus Striped 
GridFTP Framework and Server,” SC’05, ACM Press, 
2005 

[9] "Function BIRN," http://www.birncommunity.org/current-
users/function-birn/. 

[10] Keator DB, Grethe JS, Marcus D, Ozyurt B, Gadde S, 
Murphy S, Pieper S, Greve D, Notestine R, Bockholt HJ, 
Papadopoulos P; BIRN Function; BIRN Morphometry; 
BIRN-Coordinating.  A national human neuroimaging 
collaboratory enabled by the Biomedical Informatics 
Research Network (BIRN). IEEE Trans Inf Technol 
Biomed. 2008 Mar;12(2):162-72. 

[11] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. 
Beame, M. Eisler, and D. Noveck, "Network File System 
(NFS) version 4 Protocol," IETF, RFC 3530, 2003 

[12] "Rsync," http://www.samba.org/rsync/, 2009. 
[13] T. Ylonen and C. Lonvick, "The Secure Shell (SSH) 

Protocol Architecture," IETF, RFC 4251, 2006 
[14] "GridFTP URL Schemes," http://www.globus.org/ 

toolkit/docs/latest-stable/data/gridftp/user/#globus-url-
sync-syntax, 2010 

[15] A. Chervenak, R. Schuler, M. Ripeanu, M. Amer, S. 
Bharathi, I. Foster, A. Iamnitchi, C. Kesselman, "The 
Globus Replica Location Service: Design and Experience," 

IEEE Transactions on Parallel and Distributed Systems, pp. 
1260-1272, 2009 

[16] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. 
Thompson, "Internet X.509 Public Key Infrastructure (PKI) 
Proxy Certificate Profile," IETF, RFC 3820, 2004 

[17] J. Basney, M. Humphrey, and V. Welch. "The MyProxy 
Online Credential Repository," Software: Practice and 
Experience, Volume 35, Issue 9 pages 801-816, 2005 

[18] R. Housley, W. Ford, W. Polk, and D. Solo, "Internet 
X.509 Public Key Infrastructure Certificate and CRL 
Profile," IETF, RFC 2459, 1999 

[19] S. Tweedie. "Journaling the Linux ext2fs Filesystem" 
Proceedings of the 4th Annual LinuxExpo, Durham, NC, 
1998 

[20] POSIX 1003.1e draft specification "http://www.suse.de/ 
~agruen/acl/posix/posix_1003.1e-990310.pdf 

[21] "Grid Grouper" http://cagrid.org/display/gridgrouper/ 2009 
[22] "Globus XIO popen driver," http://www.mcs.anl.gov/~bres-
 naha/Stretch/ 
[23] R. Kettimuthu, A. Sim, D. Gunter, B. Allcock, P. Bremer, 
 J. Bresnahan, A. Cherry, L. Childers, E. Dart, I. Foster, K. 
 Harms, J. Hick, J. Lee, M. Link, J. Long, K. Miller, V. 
 Natarajan, V. Pascucci, K. Raffenetti, D. Ressman, D. 
 Williams, L. Wilson, L. Winkler, "Lessons learned from 
 moving Earth System Grid data sets over a 20 Gbps wide-
 area network", 19th ACM International Symposium on 
 High Performance Distributed Computing (HPDC), 2010 
[24] Howard, J.H., Kazar, M.L., Menees, S.G., Nichols, D.A., 
 Satyanarayanan, M., Sidebotham, R.N. and West, M.J. 
 Scale and Performance in a Distributed File System.ACM 
 Transactions on Computer Systems, 6 (1). 51-81. 
 1988. 
[25] M. Satyanarayanan, J. Kistler, E. Siegel, "Coda: A Resilient 

Distributed File System," IEEE Workshop on Workstation 
Operating Systems, Cambridge, MA, 1987 

[26] S. Weil, S. Brandt, E. Miller, D. Long, C. Maltzahn, Ceph: 
A Scalable, High-Performance Distributed File System, 7th 
Conference on Operating Systems Design and 
Implementation (OSDI), November 2006. 

[27] A. Rajasekar, M. Wan, R. Moore, W. Schroeder, G. 
Kremenek, A. Jagatheesan, C. Cowart, B. Zhu, S. Y. Chen, 
and R. Olschanowsky, "Storage Resource Broker-
Managing Distributed Data in a Grid," Computer Society of 
India Journal, Special Issue on SAN, vol. 33(4), pp. 42-54, 
2003. 

[28] C. Baru, R. Moore, A. Rajasekar, and M. Wan, "The SDSC 
storage resource broker," in 1998 Conference of the Centre 
for Advanced Studies on Collaborative Research 
(CASCON'98), Toronto, Ontario, Canada, 1998, p. 5. 

[29] "XNAT," http://www.xnat.org/. 
[30] J. Bresnahan, M. Link, R. Kettimuthu, D. Fraser, and I. 

Foster, "GridFTP Pipelining," in Teragrid 2007 Conference 
Madison, WI, 2007. 

 
 The submitted manuscript has been created in part by 

UChicago Argonne, LLC. Operator of Argonne National Laboratory 
("Argonne"). Argonne, a U.S. Department of Energy Office of 
Science laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and others 
acting on its behalf, a paid-up nonexclusive, irrevocable worldwide 
license in said article to reproduce, prepare derivative works, 
distribute copies to the public, and perform publicly and display 
publicly, by or on behalf of the Government.  



 


